98 research outputs found

    Experimental assessment of head losses through elliptical and sharp-edged orifices

    Get PDF
    Due to the European electricity market liberalization and the appearance of other renewable electricity producers, an increase of installed peak power capacity is relevant to provide larger amount of electricity in a shorter turbine duration. When the discharge increase is not too large, it is frequently efficient to place an orifice at the entrance of the existing surge tank. Actually, the surge tank modifications have to be designed case-by-case. The introduction of head losses helps to manage maximum and minimum water level following the management of downstream discharge control and transient events. It allows to keep the same safety level. The placed orifice should commonly produce asymmetric losses. It is important to note that target head losses are evaluated with a unidimensional numerical model which performs transient simulation for relevant flow directions in the whole water way system and hydropower plant. A previous study performed by the authors focused on the effects of sharp-edged orifice parameters. This research carries out the analysis of corresponding elliptical orifices to tested sharp-edged orifices. The goal is to evaluate the head loss modification in both directions due to the shape change

    Intermittent docetaxel chemotherapy as first-line treatment for metastatic castration-resistant prostate cancer patients

    Get PDF
    Aims: The intermittent administration of chemotherapy is a means of preserving patients' quality of life (QL). The aim of this study was to verify whether the intermittent administration of docetaxel (DOC) improves the patients' QL. Patients & methods: All patients received DOC 70 mg/m every 3 weeks for eight cycles. The patients were randomized to receive DOC continuously or with a fixed 3-month interval after the first four DOC courses. Results: The study involved 148 patients. There was no difference in QL between the groups receiving intermittent or continuous treatment. Intermittence had no detrimental effects on disease control. Conclusion: Although feasible and not detrimental, our results showed that true intermittent chemotherapy in metastatic castration-resistant prostate cancer patients failed to improve the patients' QL

    The Geriatric G8 Score Is Associated with Survival Outcomes in Older Patients with Advanced Prostate Cancer in the ADHERE Prospective Study of the Meet-URO Network

    Get PDF
    Introduction: Androgen receptor pathway inhibitors (ARPIs) have been increasingly offered to older patients with prostate cancer (PC). However, prognostic factors relevant to their outcome with ARPIs are still little investigated. Methods and Materials: The Meet-URO network ADHERE was a prospective multicentre observational cohort study evaluating and monitoring adherence to ARPIs metastatic castrate-resistant PC (mCRPC) patients aged ≥70. Cox regression univariable and multivariable analyses for radiographic progression-free (rPFS) and overall survival (OS) were performed. Unsupervised median values and literature-based thresholds where available were used as cut-offs for quantitative variables. Results: Overall, 234 patients were enrolled with a median age of 78 years (73–82); 86 were treated with abiraterone (ABI) and 148 with enzalutamide (ENZ). With a median follow-up of 15.4 months (mo.), the median rPFS was 26.0 mo. (95% CI, 22.8–29.3) and OS 48.8 mo. (95% CI, 36.8–60.8). At the MVA, independent prognostic factors for both worse rPFS and OS were Geriatric G8 assessment ≤ 14 (p < 0.001 and p = 0.004) and PSA decline ≥50% (p < 0.001 for both); time to castration resistance ≥ 31 mo. and setting of treatment (i.e., post-ABI/ENZ) for rPFS only (p < 0.001 and p = 0.01, respectively); age ≥78 years for OS only (p = 0.008). Conclusions: Baseline G8 screening is recommended for mCRPC patients aged ≥70 to optimise ARPIs in vulnerable individuals, including early introduction of palliative care

    The prognostic value of baseline and early variations of peripheral blood inflammatory ratios and their cellular components in patients with metastatic renal cell carcinoma treated with nivolumab: The Δ-Meet-URO analysis

    Get PDF
    Background: Treatment choice for metastatic renal cell carcinoma (mRCC) patients is still based on baseline clinical and laboratory factors. Methods: By a pre-specified analysis of the Meet-URO 15 multicentric retrospective study enrolling 571 pretreated mRCC patients receiving nivolumab, baseline and early dynamic variations (Δ) of neutrophil, lymphocyte, and platelet absolute cell counts (ACC) and their inflammatory ratios (IR) were evaluated alongside their association with the best disease response and overall (OS) and progression-free survival (PFS). Multivariable analyses on OS and PFS between baseline and Δ ACC and IR values were investigated with receiving operating curves-based cut-offs. Results: The analysis included 422 mRCC patients. Neutrophil-to-lymphocyte ratio (NLR) increased over time due to consistent neutrophil increase (p &lt; 0.001). Higher baseline platelets (p = 0.044) and lower lymphocytes (p = 0.018), increasing neutrophil Δ (p for time-group interaction &lt;0.001), higher baseline IR values (NLR: p = 0.012, SII: p = 0.003, PLR: p = 0.003), increasing NLR and systemic immune-inflammatory index (SII) (i.e., NLR x platelets) Δ (p for interaction time-group = 0.0053 and 0.0435, respectively) were associated with disease progression. OS and PFS were significantly shorter in patients with baseline lower lymphocytes (p &lt; 0.001 for both) and higher platelets (p = 0.004 and p &lt; 0.001, respectively) alongside early neutrophils Δ (p = 0.046 and p = 0.033, respectively). Early neutrophils and NLR Δ were independent prognostic factors for both OS (p = 0.014 and p = 0.011, respectively) and PFS (p = 0.023 and p = 0.001, respectively), alongside baseline NLR (p &lt; 0.001 for both) and other known prognostic variables. Conclusions: Early neutrophils and NLR Δ may represent new dynamic prognostic factors with clinical utility for on-treatment decisions

    ALICE: Physics Performance Report, Volume I

    Get PDF
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 900 physicists and senior engineers, from both nuclear and high-energy physics, from about 80 institutions in 28 countries. The experiment was approved in February 1997. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2001 and construction has started for most detectors. Since the last comprehensive information on detector and physics performance was published in the ALICE Technical Proposal in 1996, the detector as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) will give an updated and comprehensive summary of the current status and performance of the various ALICE subsystems, including updates to the Technical Design Reports, where appropriate, as well as a description of systems which have not been published in a Technical Design Report. The PPR will be published in two volumes. The current Volume I contains: 1. a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, 2. relevant experimental conditions at the LHC, 3. a short summary and update of the subsystem designs, and 4. a description of the offline framework and Monte Carlo generators. Volume II, which will be published separately, will contain detailed simulations of combined detector performance, event reconstruction, and analysis of a representative sample of relevant physics observables from global event characteristics to hard processes

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008
    corecore